Neutron Reflectivity from Biomimetic Membranes: Improving Reliability through Wavelet Analysis

nderstanding such key biological processes as molecular recognition, protein insertion, and molecular self-assembly in *living* biological membranes remains a challenge. Membrane materials mimicking biological ones (biomimetic membranes) provide model systems to address this issue, and, because of its special sensitivity to hydrogen, neutron reflectivity (NR) offers a unique way to reveal thin film structures in biomimetic membranes.

The feasibility of using phase-inversion techniques in NR to reveal such structural details has been demonstrated [1]. It is possible to directly measure the real part, $r_I(Q)$, of the complex reflection coefficient r(Q) as a function of wavevector Q and to mathematically invert it to obtain the

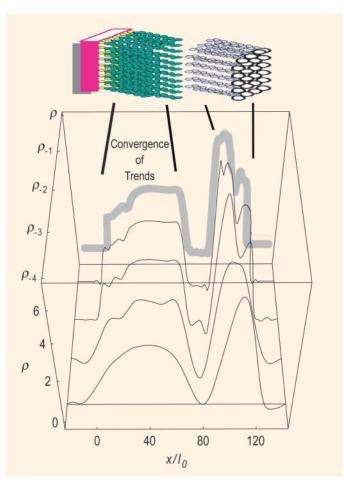


Fig. 1. Diagram of model (top) for which the computed scattering length density $\rho(x)$ is the thick grey curve. Trends converge: $\rho_{-4}(x)$, $\rho_{-3}(x)$, . . ., $\rightarrow \rho(x)$.

scattering length density (SLD) depth profile $\rho(x)$ of the film. There remains much to do, however, in defining the reliability of the results, especially in accessing the unavoidable reduction of spatial resolution induced by data truncated at a maximum wavevector, Q_{max} . Wavelet analysis provides a systematic and useful approach to the problem [2].

In using Wavelet MultiResolution Analysis (WMRA), SLD profiles are characterized by a finest length scale $\ell_0 \approx 1$ Å and coarser scales, $\ell_j = 2^{j}\ell_0$, with j negative. $\rho(x)$ viewed as a coarse "trend" $\rho_J(x)$ at resolution level J, with added "detail" $\Delta_J \rho(x)$ giving the trend at the next finer scale, $\rho_{J+1}(x) = \rho_J(x) + \Delta_J \rho(x)$. Relative to a base scale of resolution ℓ_J , the SLD profile thus can be represented by the trend plus all remaining detail, $\rho(x) = \rho_J(x) + \sum_{l \leq j} \Delta_J \rho(x)$. The experimental $\rho(x)$, associated with a given Q_{\max} determined by the instrument, is a blurred representation of the veridical SLD. It can be thought of as a coarse image bracketed by neighboring trends for this Q_{\max} .

WMRA provides spatially localized orthonormal bases for this description. A family of wavelets called Daubechies-8 seems well suited to NR analysis. For illustration, we use a realistic SLD profile obtained by molecular modeling to represent a hybrid lipid membrane on a thin gold film (diagram on top of Fig. 1), a biomimetic system typical of those being studied in many laboratories. The model $\rho(x)$, seen in the back panes of Figs. 1 and 2, consists of the gold layer, a hydrogenated alkanethiol layer, and a deuterated lipid monolayer.

Figures 1 and 2 depict the convergence of the WMRA descriptions of $\rho(x)$ as trend and detail. The "overall" shape of $\rho(x)$ effectively is determined by the trend $\rho_{-4}(x)$ and detail $\Delta_{-4}\rho(x)$, *i.e.*, by trend $\rho_{-3}(x)$. However, emergence of the prominent double peaked structure of the lipid head group near $x/l_0 = 100$ needs detail $\Delta_{-3}\rho(x)$. Subsequent detail mainly acts to sharpen the edges between the film's components.

Figure 3 shows the effective contributions of the trend and the successive spatial detail to the reflection coefficient r(Q), each calculated exactly. The edge-sharpening detail seen in Fig. 3 is not revealed in the reflection spectrum below $Q\ell_0 \approx 0.6$. Figure 4 shows the "smeared" $\rho(x)$ obtained by direct inversion of the reflec-

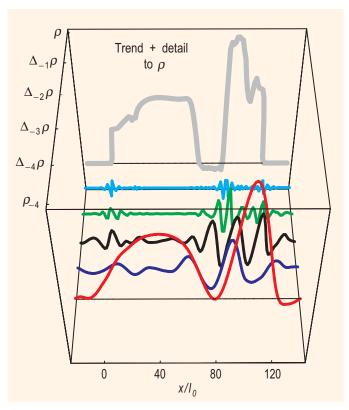


Fig. 2. Trend plus detail converges: $\rho_{-4}(x) + \Delta_{-4}\rho(x) + \Delta_{-3}\rho(x)$, . . ., $\rightarrow \rho(x)$.

tion from $\rho(x)$ using data truncated at $Q_{\rm max} \approx 0.2$ Å⁻¹. This is seen to fall "between" the trends $\rho_{-4}(x)$ and $\rho_{-3}(x)$, stemming from low-pass filters with roll-offs at $Q \approx 0.2$ Å⁻¹ and $Q \approx 0.4$ Å⁻¹, respectively. This is expected from the fact that the Fourier transforms of trends and detail overlap to a degree. Thus, a "pure" trend cannot be observed in the truncated data.

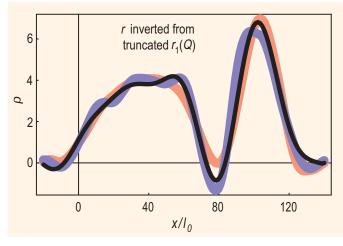


Fig. 4. Inverted $r_1(Q)$ (black) using only data truncated at $QI_0 = 0.2$. Trends $\rho_{.4}(x)$ (red) and $\rho_{.3}(x)$ (blue) of the actual $\rho(x)$.

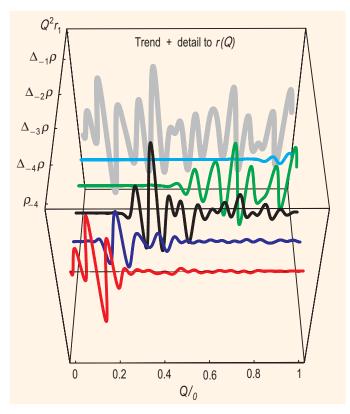


Fig. 3. Effective contributions to $Q^2r_1(Q)$ generated by the trend $\rho_{-4}(x)$ (in red) and the details $\Delta_j \rho(x)$ for j = -4, -3, -2, -1 shown in Fig. 2. The $Q^2r_1(Q)$ contributions are labeled by the SLD's that produced them.

Wavelet analysis thus provides a systematic method for assessing the correctness of density profiles measured by NR. It promises to add reliability in unraveling structures of importance in biomimetic membranes.

References:

- C. F. Majkrzak, N. F. Berk, S. Krueger, J. Dura, M. Tarek, D. Tobias, V. Silin, C. W. Meuse, J. Woodward, and A. L. Plant, Biophysical J., 79, 3330 (2000).
- [2] Wavelets were first applied to x-ray reflectivity with different focus and using different techniques by I. R. Prudnikov, R. D. Deslattes, and R. D. Matyi, J. Appl. Phys., 90, 3338 (2001).

N. F. Berk and C. F. Majkrzak NIST Center for Neutron Research National Institute of Standards and Technology Gaithersburg, MD 20899-8562